
Abstract— Future self-driving cars and current ones with 

advanced driver assistance systems are expected to interact 

with other traffic participants, which often are multiple other 

vehicles. To facilitate the motion planning of the autonomously 

controlled vehicle in collision avoidance, individual object 

vehicles with closeness in positions and velocities can be 

grouped as a single extended moving object. However, due to 

uncertainties from sensor imperfections and environmental 

disturbances, the collision avoidance conditions are often 

expressed as difficult to resolve probabilistic constraints in the 

motion planning problem. In this paper, we propose a 

constraint tightening method to transform the probabilistic 

collision avoidance condition for a vehicle group or an extended 

object into a deterministic form. This is done via a conservative 

closed-form transformation of the bivariate integral in the 

collision probability density function and subsequent 

computable approximation with logistic functions. Detailed 

numerical experiments are included to illustrate the workings 

and the performance of the proposed approach. This method 

can be incorporated in existing motion planning methods.   

I. INTRODUCTION 

In the march towards (semi-)autonomous driving, the task 

of guiding the controlled vehicle in the presence of other 

traffic participants remains a challenging problem. Therein, 

tracking of moving objects plays a significant role. In 

particular, in public traffic, multiple other vehicles evolve in 

the traffic scene with changing velocity and position. From 

the perspective of guidance and control of the individual 

autonomously controlled vehicle (ACV), group tracking can 

facilitate safe motion planning decisions and control actions 

for the current and upcoming maneuvers of the ACV. Group 

tracking information can also constrain the nature of the 

interaction of the ACV and its subsequent motion like 

collision avoidance among the individual moving objects 

(primarily other vehicles in traffic). 

In tracking of individual object vehicles from sets of 

measurements, e.g., sparse laser point cloud, each vehicle 

can be treated as an extended object with simple geometric 

shapes like a circle [1], an ellipse [2], rectangle [3] or some 

such arbitrary shape [4]. Data association approaches like 

Multi Hypothesis Tracking (MHT) [5], Probabilistic MHT 

(PMHT) [6], Probability Hypothesis Density (PHD) 

approach [7], Joint Probabilistic Data Association (JPDA) 

approach [8], or Random Finite Sets (RFS) [9] can be used 
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to assign the measurements to each identified object vehicle. 

Therein, the object vehicles are represented by an estimated 

geometric/spatial shape (center and content parameters) and 

dynamics (position and velocity) [10].  

The geometric shapes mentioned above are usually used 

in the motion planning problem to formulate the collision 

avoidance constraint. However, this problem is challenging 

for the following two principal reasons [11]: 1) the planning 

problem is non-convex as the feasible field is defined 

outside of the area occupied by the object vehicles, 2) the 

planning problem naturally involves uncertainties due to 

modeling error, sensor imperfections or environmental 

disturbances. To address these challenges, several 

approaches are proposed.  

For the first challenge, polygonal models [11] [12], as a 

disjunction of linear constraints, or algebraic models like 

circles, ellipses [13] and hyper ellipses [14] are mostly used 

in the sampling-based planning method like RRT* algorithm 

[15]. However, for mathematical constrained-optimization 

based planning methods like MPC [16], algebraic models are 

better options than polygonal models because the disjunction 

of linear constraints will lead to discontinuity in the state 

space, which results in the Disjunctive Linear Programming 

problem [17]. This problem is similar as Mixed-Integer 

Programming problem that requires a specific solver to find 

a solution and is not efficient for real-time planning.  

For the second challenge, the uncertainties can be handled 

by either considering their bounds (non-deterministic case) 

[18] or distribution (probabilistic case) [11] [19]. In the non-

deterministic case, the worst case of the uncertainty is 

considered in the motion planning problem thus leading to a 

very conservative solution for the planning problem. 

However, in the probabilistic case, the computations are 

often intractable. However, for specified confident 

level/coefficient (e.g. probability of collision less than some 

small value), a solution can be obtained by solving an 

approximate deterministic motion planning problem with 

tightened constraints that account for the uncertainties. With 

assumptions of Gaussian distribution states, an efficient 

approximate explicit solution for probabilistic collision 

evaluation (in position description) was given in [19] for 

small-sized objects (radius smaller than 1 m). However, for a 

real normal-sized road vehicle, this approximation will not 

work. Thus, in our prior work [20], we developed a 

numerical method for evaluating the probability of closeness 

(including both position and forward velocity) between two 

individual object vehicles (IOVs) with non-negligible 
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geometric shapes/sizes and used it for object grouping. 

A given number of IOVs that have common movement 

(e.g. similar velocities) and geometrical proximity can be 

regarded as an object vehicle group (OVG) and represented 

as a single extended moving object. This helps to redefine 

the feasible collision-free field to exclude undesired local 

minimums (for the motion plan), as we illustrated in [21] 

with deterministic object motion models. Therein, we 

formed groups between detected object vehicles based on a 

distance threshold defined by the overlap of their elliptical 

collision fields. The identified vehicle groups are then 

represented with the tightest/optimal hyper-elliptical 

boundaries. Later in [22], we refined the object vehicle 

grouping method with a group structure evolution model and 

applied a supervised learning method to reduce the on-line 

computational efforts of generating the optimal (tightest) 

vehicle group boundaries. In [20], we extended the grouping 

method to the case with probabilistic uncertainties on the 

motion and measurement models. Therein, we proposed the 

probability of mutual closeness as criteria for vehicle group 

formation. This automatically considers closeness both in 

velocity and position in order for two objects to be in the 

same group. The collision boundary of the group is then 

defined as the joint position state distribution of those IOVs 

in the group with a specified confidence level or coefficient. 

However, the confidence level or coefficient is evaluated via 

a numerical integration method which is not efficient for 

real-time implementation.  

The purpose of this paper is to develop an efficient 

computational method to tighten the probabilistic collision 

avoidance constraint in a deterministic way. Specifically, the 

contributions of this paper include:  

 Derive a general integral form to evaluate the probabilistic 

collision avoidance constraint between an ACV and an 

IOV, both with non-negligible geometric shapes.  

 Derive an explicit conservative transformation of the 

probabilistic collision avoidance constraint followed by a 

computable closed-form approximation 

 Represent the multi-vehicle group (OVG) with an 

extended object vehicle and then tighten the probabilistic 

collision avoidance constraint between the ACV and the 

OVG using the above result. 

The rest of the paper is organized as follows. Section II 

introduces the details the derivation of the probabilistic 

collision avoidance constraint as well the main steps for 

constraint tightening. Section III introduces the multi-vehicle 

grouping framework and the application of tightening the 

collision avoidance constraint. Section IV shows some 

illustrative numerical experiments. The potential application 

of the proposed method in motion planning of an 

autonomous vehicle is also illustrated in this section. 

Conclusions are included in Section IV. 

II. TIGHTENING THE PROBABILISTIC COLLISION AVOIDANCE 

CONSTRAINT 

A. Probabilistic Collision Avoidance Constraint 

Considering the general discrete time evolution of the 

motion state and measurement sequence for a vehicle i: 

 , ,, 1 , 1,i k i km i kix f x w                                 (1) 

 ,, , ,,m ii k i k i kz h x v                                   (2) 

where fm is a (nonlinear) function of the state x and process 

noise sequence w. z is the available measurement. hm is a 

(nonlinear) function of the states x and measurement noise 

sequence v.  

In the Bayesian approach to tracking the motion of 

vehicle i, one attempts to estimate the posterior probability 

density function (PDF) pi(xi,k|zi,1:k) of the states xi according 

to all the measurements zi up to time k. For a linear 

description of the motion and measurement system (1) and 

(2), the analytical solution for the exact posterior PDF can be 

obtained via the application of Kalman Filter (for Gaussian 

noise v and w,) and Grid-based Estimator (requiring discrete 

state space); For a nonlinear description of the system (1) 

and (2), Extended Kalman Filter or Unscented Kalman 

Filter, Approximate Grid-based Estimator and Particle Filter 

can be used to approximate the posterior PDF. 

For collision identification for a specific time, without 

too much loss of generality, hereafter, x represents only the 

position state of the centroid of the geometric shape of each 

vehicle, for both the ACV and IOV. This because, unlike for 

grouping where both position and velocity closeness can be 

considered judging group formation, for physical collision 

identification only geometric closeness is relevant. Let X(x) 

be the geometric space (region or shape) occupied by a 

vehicle considering its geometric shape. Then, the collision 

between the ACV and IOV i at time k is defined by the 

condition C(xACV,k,xIOV_i,k): XACV,k(xACV,k)∩XIOV_i,k(xIOV_i,k)≠Ø, 

as shown in in Figure 1. Then, the probability that the ACV 

avoids collision with IOV i is higher than a specified 

confidence value 1-δ, 0<δ<1, can be given by: 

    , , _ , _ ,ACV k ACV k IOV i k IOV i kX x X x ØP           (3) 

To simplify the evaluation of the collision probability we 

do some modification to the collision condition as well as 

the collision avoidance constraint as shown below:  

 
Figure 1 Example of the collision condition for ACV and IOV i with 

rectangular shape description in 2D (a is half length and b is half width) 
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  , , _,_ ,ACV IOV i k IOVACV ik kx xP  X                 (4) 

where XACV,IOV_i,k(xIOV_i,k) is an extended geometric space 

occupied by the IOV i at time k on which we lump the 

geometric shapes/sizes of the ACV XACV,k(xACV,k) and IOV i 

XIOV_i,k(xIOV_i,k). Therein, the ACV is considered as a point. 

Note that (3) and (4) are equivalent. An example of collision 

in 2D position space between ACV and IOV i with 

rectangular shapes is shown in Figure 1. One can also 

similarly derive the extended shape XACV,IOV_i(xIOV_i,k) for 

other geometric descriptions like circles or ellipses. 

However, rectangular shapes lead to closed-form solutions 

for the probability of collision.  

As the state of the ACV and IOVs are estimated by the 

posterior PDF for the centroid of each vehicle, the 

probability of collision between the ACV and IOV i is 

defined by the integral of the joint position distribution of 

the ACV and IOV i: 

  

   

, , ,

, ,

_ _

, , , , , ,_ _ _ _

, X

, ,
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C ACV k IOV i k ACV IOV i k ACV k IOV i k ACV k IOV i k

ACV kP

I p d

x x

x x x x x dx

 

 
(5) 

where pACV,IOV_i is the joint position PDF of the ACV and 

IOV i, IC is the collision indicator function defined by:  

 
 , , ,

, ,

_ _

_

,1,  if  

0, otherwis
,

e

ACV IOV i k IOV i k

C ACV k IOV i k

ACV kx x
x xI

 
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

X
    (6) 

Using (6), (5) can be modified as: 

  
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_ _, , ,
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,
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X

  (7) 

As the inner integral of (7) constrains the range of xACV,k 

within XACV,IOV_i,k(xIOV_i,k), we can define a deviation state 

variable ΔxIOV_i,k∈XACV,IOV_i,k (0) to replace xACV,k:  
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   (8) 

where XACV,IOV_i,k (0) is the lumped space when xIOV_i,k is at 

the origin. Then, 

  

 
 

 
, ,_,_

_ _

_ _ _

, , ,

, , _ _ _

,
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IOV i k ACV IOV i k

ACV IOV i k IOV i k

ACV k IOV i k IOV i k IOV i k IOV i k IOV i k IOV i k IO
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x

P x x
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 

 

    
    X

X

(9) 

Assuming the distributions of the states of the ACV and IOV 

i are Gaussian and independent, (9) can be simplified 

further. 

Proposition 1: Consider the ACV, with a point 

description with position state xACV,k and IOV i, with an 

extended deterministic geometry description 

XACV,IOV_i,k(xIOV_i,k) with position state xIOV_i,k. If the states 

xACV,k and xIOV_i,k have Gaussian distributions, i. e., 

xACV,k~N(mACV,k, ΣACV,k), xIOV_i,k~N(mIOV_i,k, ΣIOV_i,k), and the 

state tracks of the ACV and IOV i are independent, then: 

  

 

 , , , , ,_ _ _
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  
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



 X

X

(10) 

where nx is the dimension of the position state x (nx=2 for the 

2D case). We have given the proof a similar statement as 

Proposition 1 in [20]. Therefore, with (9) we have derived 

the general integral form for the probability of collision 

between the ACV and an IOV with non-negligible geometric 

shape and (10) gives the simplification for mutually 

independent motions with Gaussian uncertainty. 

B. Constraint Tightening  

To avoid the numerical evaluation of (10), in this paper, 

we seek to adopt an explicit formula that can approximate 

the integral so that the collision avoidance constraint can be 

evaluated rapidly for real-time applications. Considering the 

collision in a 2D case, the position state is defined by: 

e

s
x

y

 
  
 

                                      (11) 

where s and ye are the arc length and lateral position for the 

centroid of the vehicle’s geometric shape defined in the 

Frenet frame, as shown in Figure 2. κ(s) is the curvature 

function of the reference path in terms of s. vs is the velocity 

of the vehicle, the subscription t and n represent the 

tangential and normal direction with respect to the reference 

path. Here, we assume the forward direction of the vehicle’s 

geometric shape is always consistent with its tangential 

velocity vt
s. 

 

By following the assumptions used in Proposition 1 and 

considering rectangular shapes for the vehicles, (10) can be 

rewritten as a definite bivariate normal integral: 

 

Figure 2. Motion description for the vehicle in the Frenet frame. 
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where the integral region (Δs ,Δs ), (Δ ey ,Δ ey ) are defined 

by: 
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and the combined covariance matrix _, ,ACV IOV i k  is given by: 
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where σ is the variance for each position state and ρ is the 

correlation coefficient between s and ye. Without loss of 

generality, here we consider |ρ|<1. To efficiently and 

conservatively evaluate the probability of collision in (12) 

with |ρ|<1, we give the following closed-form approximation 

that voids the evaluation of the integral on the right-hand 

side of (12). We detail the derivations with general 

observations about bivariate normal distributions in Remark 

1 and Remark 2.  

Remark 1: Let (X, Y) have a bivariate normal distribution 

with correlation coefficient ρ=0: 

2

2

0
,

0

X

Y

X

Y

mX
N

Y m





    
      

      

                 (15) 

The solution for the bivariate integral within the integral 

region ( X , X ), (Y ,Y ) is easy to obtain: 

 

   

,

1 1 1
erf erf
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X

X
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      (16) 

where erf is the error function: 

 
21

erf d
x

x

tx e t





                         (17) 

This function can be approximated very-well by a logistic 

function [23]: 

 
2

1
1 l

l c x
f x

e


 


                          (18) 

with minimum cumulative square error found with the 

coefficient cl=2.4, as illustrated in Figure 3. Therefore, (16) 

is rewritten by: 

 

   

,
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4 2 2
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      (19) 

Thus, we have arrived at a closed-form approximated 

solution for the cumulative probability of a bivariate normal 

distribution defined as (15). 

Remark 2: Let (X, Y) have a bivariate normal distribution 

with zero means and correlation coefficient |ρ|<1: 

2
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0
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Y
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      

                 (20) 

It’s hard to directly find the closed-form solution for the 

bivariate integral of this distribution, but it can be 

transformed into a bivariate normal distribution with ρ=0 

(form of (15)) via a coordinate rotation, as shown in Figure 

4. After rotation, the new distribution is given by: 
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                 (21) 

The new self-variances σX’, σY’ and the rotational ’angle θ can 

be determined by computing the eigenvalues and 

eigenvector of the old covariance matrix [24] to arrive at: 

4 2 2 2 2 42 2 2

’ ’

2 2
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Note that different from the case in Remark 1, the X/Y 

 
Figure 4 Bivariate normal distribution under different coordinate. ρ≠0 

in X/Y coordinate. ρ=0 in X’/Y’ coordinate. The red rectangle 

represents the integral region. 

 
Figure 3 Approximation of the error function with a logistic function. 

The cumulative square error for 20000 samples range from -10 to 10 
with different cl values (Left). The approximation performance when 

cl=2.4. The maximum error is 0.019 when |x| is close to 1.44 (Right). 
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coordinate and X’/Y’ coordinate are both coordinates with 

their origins located at the means of the bivariate distribution 

(or are cases with zero means; non-zero mean distributions 

can be easily handled by applying translations with the 

means). 

To apply the solution of the bivariate integral obtained 

from Remark 1 to our problem, the rectangular integral 

region need to be rotated parallel with the axes of the new 

coordinate system. Also, to ensure a conservative evaluation 

of the probability, the new integral region must cover or 

circumscribe the old one. As shown in Figure 4, considering 

the original integral region ( X , X )=(X0-a, X0+a), 

(Y ,Y )=(Y0-b, Y0+b) in X/Y coordinate, we select the new 

integral region to be given by ( ’X , ’X )=(X0’-a’, X0’+a), 

( ’Y , ’Y )=(Y0’-b’,Y0’+b’) in X’/Y’ coordinate, where: 

0 0

0 0
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                  (24) 
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                     (25) 

Then, a closed-form approximation of the cumulative 

probability of a bivariate normal distribution defined as (20) 

is conservatively obtained by: 
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(26) 

Using this result, the probability of collision in (12) can be  

evaluated using the conservative integral region in the 

rotated coordinate system, which is then approximated in 

closed-form by the easy to evaluate logistic function.  

III. MULTIPLE VEHICLE GROUPING FRAMEWORK 

In [22], we proposed a probabilistic framework to track 

groups of IOVs. This framework follows a hierarchical 

estimation scheme to determine the group structure G from 

the state of all detected object vehicles at time k. The set, 

denoted by X, of the states and geometrical shapes for all 

object vehicles is obtained by Bayesian IOV tracking with 

the measurement set Z from sensors. Then, a closeness 

matrix Mc between each pair of object vehicles is calculated 

via probabilistic collision checking considering uncertainties 

and geometrical shapes. The collision checking is used to 

evaluate the probabilistic collision between the IOVs, 

similar to condition (9), but considering the velocity state as 

well. Finally, a density-based clustering method (DBSCAN) 

with a specified probabilistic distance threshold ε is used to 

group/cluster the IOVs and determine the group structure 

state G, which includes: 1) xG, the estimated states (of a 

representative point, e.g. centroid) of the group as well as 

their covariance, 2) SG, a parameters set (or generally, an 

algebraic function) that is used to describe the current 

shape/contour of the group when considered as an extended 

rigid object, and 3) IG, the index set of the IOVs that belongs 

to the group, and 4) BG, the OVG behavior indicating the 

group structure change from the last time step. Details can 

be found in [22]. 

From the probabilistic grouping results, the probability of 

avoiding a collision with a certain OVG i can be described 

by the joint probability of collision avoidance with all the 

IOVs in the OVG i. Specifically, with a confidence value 1-

δ, 0<δ<1, of the ACV to avoid collision avoidance with 

OVG i at time k, the constraint is given by: 
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X         (27) 

Applying Boole’s inequality [25], (27) can be conservatively 

converted to: 

  
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N

ACV IOV j k IOV j kC

j

A V kx xP 

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where NIG,i,k is the number of the IOVs in OVG i. We can see 

that using (28), evaluating the constraint for ACV to avoid a 

collision with OVG i could be computationally expensive 

when NIG,i,k is  large number. This will deteriorate the 

performance of real-time motion planning method like MPC 

or RRT* that requires high frequency update of the solution 

plan for avoiding collision. To overcome this issue, here we 

consider the OVGs as an individual extended object. The 

idea comes from our previous work [21] [22]. The extended 

shape can be obtained from the union of the geometric 

shapes of all the IOVs in the group. An example for a 

rectangular shape description is shown in Figure 5. The 

collision avoidance condition is thus transformed to avoiding 

collision with an extended object formed by the group. 

Therefore, (28) becomes: 

  , , _,_ ,ACV OVG i k OVGACV ik kx xP  X                 (29) 

with Gaussian uncertainty assumption, (12) or the 

approximation (26) can be used to evaluate (29) with the 

integral regions defined by: 
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Figure 5 Illustration of the extended geometric shape for the OVG i 
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From (30), (31), as the extended geometric shape of OVG i 

covers more area than the union of the IOVs in the group, it 

will sacrifice some feasible regions for collision free plans. 

However, it helps to exclude some local minima and reduce 

the time to evaluate the collision constraint for the planning 

problem. We will demonstrate this via simulation in the next 

session. 

According to (28), we can see the IOVs that are closer to 

the ACV in the OVG i will have more influence on the  

accumulative collision probability. In addition, accounting 

for the uncertainties on the position state of the ACV, the 

combined covariance matrix _, ,ACV OVG i k  between the ACV 

and OVG i can be selected from the set of the combined 

covariance matrix 
,, ,_ G iACV IOV I k  between the ACV and the 

IOVs in OVG i:  

, ,min
, , ,_ _ ,MD G iACV OVG i k ACV IOV j k                  (32) 

where jMDmin,G,i is the index for the IOV in OVG i with the 

minimum Euclidean distance to the ACV: 
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
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(33) 

Therefore, by determining the size, the estimated position 

and the covariance matrix for the extended geometric shape 

of OVG i, the avoidance condition (29) can be evaluated. 

IV. RESULTS AND DISCUSSION 

To illustrate the performance of the proposed constraint 

tightening method, we include the setup and results of some 

simulation comparisons for the boundary of the probabilistic 

collision of the ACV with: Case 1) a single IOV to compare 

the tightened constraint with different confidence values 

under numerical integration of the integral in (12) and the 

approximation of integral in (26); Case 2) an OVG with 3 

IOVs inside it with fixed-group structure to compare the 

tightened group constraint with numerical integration via 

(28) and (29); and Case 3) an OVG with a dynamic group 

structure to compare the tightened constraint under 

numerical integration combining (12) and (28) to the 

approximation method via (26) and (29). The simulation is 

executed on an Intel Dual Core i5-4200M 2.4 GHz processor 

and 4GB RAM. 

Figure 6 shows the probabilistic collision avoidance 

constraint tightening for Case 1: ACV with a single IOV. 

We compare the contour of the tightened constraint with 

different confidence values under numerical integration of 

the integral in (12) (referred too here as “actual”) and the 

approximation method in (26). We can see at ρ=0, the actual 

constraint and the approximation are the same. As |ρ| rises, 

the approximation error increases, but the approximation is 

always more conservative than the actual constraint. The 

conservatism is due to the additional integral region 

generated by (24), (25). Also, by using a closed-from 

approximation, the average time ta to evaluate the constraint 

for a pair of estimated ACV and IOV positions is more than 

40x faster than the numerical integration. 

Figure 7 shows the probabilistic collision avoidance 

constraint tightening for Case 2: ACV with OVG with fixed 

group structure. We compare the case with actual constraint 

evaluation via (28) and the approximated constraint 

evaluation via (29). We can see the approximation case will 

generate a conservative rectangular area that covers all the 

probabilistic collision area between the ACV and IOVs. This 

keeps the number of evaluations of the probabilistic collision 

avoidance constraint equal to one per OVG. Therefore, the 

average computing time will not rise with the number of 

IOVs in the OVG as (28). Also, it excludes the local 

minimum generated by the union of avoiding collision with 

individual IOVs and the lane boundary, as shown in the area 

marked by red ellipse. When combined with the 

approximation of bivariate integral in (26), a more 

conservative and faster performance will be obtained, as 

shown in the next case. 

The probabilistic collision avoidance constraint 

tightening for Case 3: ACV with OVG with dynamic 

   
Figure 6 Illustration of the collision avoidance constraint tightening for a single IOV case with different correlation coefficient ρ. σ is the combined state 

variance including both ACV and IOV effect in (14). Actual and approximation case are evaluated by (12) and (26), respectively.  
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structure is illustrated via three sampling instances (t=0s, 15s 

and 45s) in an evolving traffic shown in Figure 7. We 

compare the case with actual constraint evaluation (via (12) 

and (28)) and the approximated constraint evaluation (via 

(26) and (29)). In the simulation setting, IOV 1 intends to be 

driving around 30m/s, IOV 2 keeps constant velocity around 

27m/s, and IOV 3 intends to pass IOV4 and then catch up 

with IOV 5 and IOV6. The rest of the IOVs are going round 

25m/s. All the motions of IOVs are estimated by Kalman 

filter with position measurements, and the grouping is done 

by clustering with thresholded collision probabilities as 

described earlier and in [20]. Then, the method proposed in 

this paper is used to evaluate the probability of avoiding 

collision with those IOVs and OVGs at different instances. 

We can see the proposed method generates more 

conservative collision avoidance constraints for all cases. 

Also, the average time to evaluate the constraint with 

approximation method is much faster than the actual 

(numerical integration). The more number of OVGs are 

identified the faster the approximation method will be 

relative to individual evaluations, as the total number of 

constraint evaluation between the ACV and (extended) IOVs 

reduces (6 for the case at t=0s and 15s, but 4 for the case at 

t=45s).  

From the simulation results above, we can see the 

approximation method can quickly and conservatively 

evaluate the probability of collision avoidance of an ACV 

with both IOVs and OVGs. In other words, once the 

uncertainty propagation of the ACV and IOVs in a short 

future horizon are predicted, the tightened collision 

avoidance constraint with specified confidence values can be 

easily determined. Therefore, this result has a potential use 

in the real-time motion planning of autonomous vehicles in 

uncertain public traffic involving many vehicles. Such 

planning frameworks were discussed, for example, our 

previous work [16] that discusses predictive control 

approaches and even those of [15] that use rapidly exploring 

random trees.  

V. CONCLUSION 

In this paper, we first derived a general integral form for 

evaluating the probabilistic collision avoidance condition 

 

 

 

Figure 7 Illustration of the collision avoidance constraint tightening for 

an OVG case with different uncertainties: ρ1=0.5, σs,1=1.1, σye,1=0.6; 
ρ2=0, σs,2=1, σye,2=0.4; ρ3=-0.3, σs,3=0.9, σye,3=0.5. σ is the combined 

state variance including both the ACV and IOV in (14). Actual and 

approximation cases are evaluated by (28) and (29), respectively. 

 

 

 

 

Figure 8 Illustration of the collision avoidance constraint tightening 

(only the contours with confidence value equal to 0.5 are shown) for an 

OVG case with dynamic group structure. The figures are sampled from 
a dynamic profile at time instance 0, 15 and 45s (from top to bottom). 

Actual case is evaluated by (12) and (28) while the approximation case 

is evaluated by (26) and (29). 
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between an autonomously controlled vehicle (ACV) and an 

IOV, where both of which have non-negligible geometric 

shape information. Then, we outline a computationally 

efficient method is to evaluate the probabilistic collision 

avoidance constraint in a deterministic way. This is achieved 

by getting around the evaluation of the bivariate integral of 

the collision avoidance condition via exact coordinate 

transformations on the probabilistic condition followed by a 

function approximation. We show empirically and 

intuitively that this function approximation can be controlled 

so that the overall computation is conservative, i.e., it can be 

applied to tighten the probabilistic collision avoidance 

constraint. Furthermore, we show by extension that the 

result can be adopted to evaluate the collision avoidance 

condition between the ACV and the OVG where the latter is 

considered as extended geometric shape and locally 

computed covariance. The performance of the proposed 

constraint tightening method is illustrated via numerical 

experiments involving an ACV and other individual vehicles 

and some with fixed and dynamic group structures. In 

continuing work, we will apply the tightened collision 

avoidance constraint in the real-time stochastic motion 

planning algorithms for autonomous vehicles. 
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